Preliminary laboratory characterization of serpentinite rocks from Calabria (southern Italy) employed as stone material

Rosalda Punturo, Rosolino Cirrincione, Giovanna Pappalardo, Simone Mineo, Eugenio FAzio, Andrea Bloise


Serpentinite rocks are employed and traded as building and ornamental stones as well as for decorative jewels worldwide. In Calabria (southern Italy), extensive ophiolite outcrops made of serpentinite and metabasite rocks allowed serpentinite exploitation and marketing since prehistorical times. For this reason, we chose some serpentinite –key outcrops, such as those ones located at quarries and road cut in the area of Sila Piccola (northern Calabria) to collect representative samples for specific laboratory analyses.

The petrographic features of the serpentinite rock samples have been then investigated in detail by means of Polarized Light Microscopy (PLM), X-ray powder diffractometry (XRPD), Scanning Electron Microscopy combined with Energy-Dispersive Spectrometry (SEM/EDS). Moreover, some tests have been carried out on serpentinite specimens in order to establish their physical-mechanic properties such as the Uniaxial Compressive Strength (UCS), porosity and seismic behavior, before and after cycles of salt crystallization tests. This work aims to study serpentinites from Gimigliano and Conflenti   quarry Calabria region (Italy) with an attempt to shed light on the variation of main physical-mechanical and petrophysical properties that occur after these rocks undergo ageing tests, in order to predict their behavior in monuments. Results showed that microfractures play a key-role in affecting the whole behavior of these rock, since the combined action of filling by salt and expansion implicate weaker behavior under the physical-mechanical point of view.



Serpentinite; physical-mechanical properties; petrophysics; historical quarries; Natural Occurring Asbestos; Calabria (Italy)

Full Text:



Al-Harthi A.A., Al-Hamri R.M. & Shehata W.M., 1999 – The porosity and engineering properties of vescicular basalt in Saudi Arabia. Eng. Geol., 54, 313-320.

Belluso E., Ferraris G., 1991. New data on balangeroite and carlosturanite from Alpine serpentinites. European Journal of Mineralogy 3, 559–566.

Bloise A., Belluso E., Barrese E., Miriello D., Apollaro C., 2009a. Synthesis of Fe-doped chrysotile and characterization of the resulting chrysotile fibres. Crystal Research and Technology 44, 590–596.

Bloise A., Barrese E., Apollaro C., 2009b. Hydrothermal alteration of Ti-doped forsterite to chrysotile and characterization of the resulting chrysotile fibres. Neues Jahrbuch für Mineralogie – Abhandlungen 185, 297–304.

Bloise A., Belluso E., Fornero E., Rinaudo C., Barrese E., Capella S., 2010. Influence of synthesis condition on growth of Ni-doped chrysotile. Microporous and Mesoporous Materials 132, 239–245.

Bloise A., Critelli T., Catalano M., Apollaro C., Miriello D., Croce A., Barrese E., Liberi F., Piluso E., Rinaudo C., Belluso E., 2014. Asbestos and other fibrous minerals contained in the serpentinites of the Gimigliano-Mount Reventino Unit (Calabria, S-Italy). Environmental Earth Sciences 71, 3773–3786.

Bloise A., Catalano M., Barrese E., Gualtieri A.F., Gandolfi N.B., Capella S., Belluso E. 2016a. TG/DSC study of the thermal behaviour of hazardous mineral fibres. Journal of Thermal Analysis and Calorimetry 123, 2225–2239.

Bloise A., Barca D., Gualtieri A.F., Pollastri S., Belluso E., 2016b. Trace elements in hazardous mineral fibres. Environmental  Pollution 216, 314–323.

Bloise A., Punturo R., Catalano M., Miriello D., Cirrincione R., 2016c. Naturally occurring asbestos (NOA) in rock and soil and relation with human activities: the monitoring example of selected sites in Calabria (southern Italy). Italian Journal of Geosciences 135, 268–279.

Bloise A., Kusiorowski R., Lassinantti Gualtieri M. and Gualtieri A F., 2017a. Thermal behaviour of mineral fibres. In: Gualtieri A.F. (Eds), Mineral Fibres: Crystal Chemistry, Chemical-physical Properties, Biological Interaction and Toxicity. European Mineralogical Union Mineralogical Society of Great Britain & Ireland, Emu notes in mineralogy 18, 215-260.

Bloise A., Catalano M., Critelli T., Apollaro C., Miriello D., 2017b. Naturally occurring asbestos: potential for human exposure, San Severino Lucano (Basilicata, Southern Italy). Environmental Earth Sciences 76, 648.

Caggianelli A., Liotta D., Prosser G. Ranalli, G. 2007. Pressure-temperature evolution of the late Hercynian Calabria continental crust: compatibility with post-collisional extensional tectonics. Terra Nova, 19(6), 502-514.

Chernak L. J., Hirth G., 2010. Deformation of antigorite serpentinite at high temperature and pressure. Earth and Planetary Science Letters, 296, 23-33.

Ciarcia S., Mazzoli S., Vitale S., Zattin M., 2012. On the tectonic evolution of the Ligurian accretionary complex in southern Italy. Geological Society of America Bulletin, 124, 463-483.

Cirrincione, R., Fazio, E., Fiannacca, P., Ortolano, G., Pezzino, A., Punturo, R., 2015. The Calabria-Peloritani Orogen, a composite terrane in Central Mediterranean; Its overall architecture and geodynamic significance for a pre-Alpine scenario around the Tethyan basin. Period. di Mineral., 84, 701-749

Compagnoni R., Ferraris G., Mellini M., 1985. Carlosturanite, a new asbestiform rock-forming silicate from Val Varaita, Italy. American Mineralogy 70, 767–772.

Deer W.A., Howie R.A., Zussman J., 2009. Rock-forming Minerals. Vol. 3B, Layered Silicates Excluding Micas and Clay Minerals. Geological Society of London, London, pp. 320.

Evans B.W., 2004. The serpentinite multisystem revisited: chrysotile is metastable. International Geology Review 46, 479-506.

Fiannacca P., Williams I., Cirrincione R., 2017. Timescales and mechanisms of batholith construction: Constraints from zircon oxygen isotopes and geochronology of the late Variscan Serre Batholith (Calabria, southern Italy). Lithos, 277, 302-314.

Guillot S., Hattori K. 2013. Serpentinites: essential roles in geodynamics, arc volcanism, sustainable development, and the origin of life. Elements 9, 95-98.

ISRM, 2007. The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. In: Ulusay, R., Hudson, J.A. (Eds.), Suggested Methods Prepared by the Commission on Testing Methods. International Society for Rock Mechanics, Kozan Ofset, Ankara, Turkey, p. 628 Compilation Arranged by the ISRM Turkish National Group.

Ismael I. S., Hassan M. S., 2008. Characterization of some Egyptian serpentinites used as ornamental stones. Chinese Journal of Geochemistry, 27, 140-149.

Lanzafame G., Zuffa G. G., 1976. Geologia e petrografia del foglio Bisignano (bacino del Crati, Calabria) - con carta geologica alla scala 1:50.000. Geol. Rom., 15, 223–270.

Liberi F., Morten L., Piluso E., 2006. Geodynamic significance of ophiolites within the Calabrian Arc. Island Arc, 15,  26–43.

Miller R.P., 1965. Engineering Classification and Index Properties for Intact Rock (Ph.D. Thesis) University of Illinois.

Mineo S., Pappalardo G., 2016. The Use of Infrared Thermography for Porosity Assessment of Intact Rock. Rock Mechanics and Rock Engineering, 49 (8), 3027-3039,. DOI: 10.1007/s00603-016-0992-2

Mineo S., Pappalardo G., Rapisarda F., Cubito A. and Di Maria G., 2015. Integrated geostructural, seismic and infrared thermography surveys for the study of an unstable rock slope in the Peloritani Chain (NE Sicily). Engineering Geology, 195, 225–235, DOI:10.1016/j.enggeo.2015.06.010

Monaco C, Tortorici L, Paltrinieri W., 1998. Structural evolution of the Lucanian Apennines, southern Italy. Journal of Structural Geology, 20/5, 617-638.

Moody J.B., 1976. Serpentinization: a review. Lithos 9, 125-138.

Palchik V., Hatzor Y.H., 2002. Crack damage stress as a composite function of porosity and elastic matrix stiffness in dolomites and limestones. Eng. Geol. 63, 233–245.

Pappalardo G., 2015. Correlation between P-wave velocity and physical–mechanical properties of intensely jointed dolostones, Peloritani mounts, NE Sicily. Rock Mech. Rock Eng., 48, 1711-1721.

Pappalardo G., Mineo S., 2017. Investigation on the mechanical attitude of basaltic rocks from Mount Etna through InfraRed Thermography and laboratory tests. Construction and Building Materials 134, 228–235. DOI: 10.1016/j.conbuildmat.2016.12.146

Pappalardo G., Mineo S., 2016. Microstructural controls on physical and mechanical properties of dolomite rocks. Rend. Online Società Geologica Italiana, Vol. 41, 321-324, 2016. DOI: 10.3301/ROL.2016.158

Pappalardo G., Punturo R., Mineo S., Contrafatto L., 2017. The role of porosity on the engineering geological properties of 1669 lavas from Mount Etna. Engineering Geology, 221, 16-28, 2017. DOI: 10.1016/j.enggeo.2017.02.020

Pappalardo G., Mineo S., Monaco C., 2016a. Geotechnical characterization of limestones employed for the reconstruction of a UNESCO world heritage Baroque monument in southeastern Sicily (Italy). Engineering Geology, 212, 86-97,. DOI: 10.1016/j.enggeo.2016.08.004

Pappalardo G., Punturo R., Mineo S., Ortolano G.,Castelli F., 2016b. Engineering Geological and Petrographic Characterization of Migmatites Belonging to the Calabria-Peloritani Orogen (Southern Italy). Rock Mechanics and Rock Engineering, 49 , 1143–1160, 2016. DOI: 10.1007/s00603-015-0808-9

Pepe G., Mineo S., Pappalardo G., Cevasco A., 2017. Relation between crack initiation-damage stress thresholds and failure strength of intact rock. Bulletin of Engineering Geology and the Environment. DOI: 10.1007/s10064-017-1172-7

Pereira D., 2012. A report on serpentinites in the context of heritage stone resources. Episodes 35, 478 -480.

Pereira D., Peinado M., 2012. Serpentinite. Geology Today, 28, 152-156.

Pereira D., Blanco J. A., Peinado M., 2012. Study on Serpentinites and the Consequence of the Misuse of Natural Stone in Buildings for Construction. Journal of Materials in Civil Engineering 25, 1563-1567.

Piluso E., Cirrincione R., Morten L., 2000. Ophiolites of the Calabrian Peloritan Arc and their relationships with the crystalline basement (Catena Costiera and Sila Piccola, Calabria, southern Italy) GLOM 2000 Excursion guide-book. Ofioliti, 25, 117-140.

Punturo R., Fiannacca P., Lo Giudice A., Pezzino A., Cirrincione R., Liberi F., Piluso E. 2004. Le cave storiche della “pietra verde” di Gimigliano e Monte Reventino (Calabria): Studio petrografico e geochimico. Bollettino Accademia Gioenia di Scienze Naturali Catania, 37, 35-57

.Punturo R., Bloise A., Critelli T., Catalano M., Fazio E., Apollaro C., 2015. Environmental natural implications related to asbestos occurrences in the ophiolites of the gimigliano-mount reventino unit (Calabria, southern italy). International Journal of Environmental Research 9, 405-418.

Punturo R., Mamtani M., Fazio E., Occhipinti R., Renjith A., Cirrincione R., 2017. Seismic and magnetic susceptibility anisotropy of middle-lower continental crust: Insights for their potential relationship from a study of intrusive rocks from the Serre Massif (Calabria, southern Italy). Tectonophysics, 712-71, 542-556.

Schreier H., 1989. Asbestos in the natural environment. Studies in Environmental Science

37, Elsevier, Amsterdam, pp. 158.

Sousa L.M.O., Suarez del Rio L.M., Calleja L,. Ruiz de Argandofia V.G., Rodriguez-Rey A., 2005. Influence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites. Eng Geol 77:153–168

Torok A., Vasarhelyi B., 2010. The influence of fabric and water content on selected rock mechanical parameters of travertine, examples from Hungary. Eng. Geol. 115, 237–245.

Tugrul A., Zarif I.H., 2000. Engineering aspects of limestone weathering in Istanbul, Turkey. Bull. Eng. Geol. Env. 58, 191–206.

Vitale S., Ciarcia S., Tramparulo F., 2013. Deformation and stratigraphic evolution of the Ligurian Accretionary Complex in the southern Apennines (Italy). Journal of Geodynamics, 66, 120-133.


  • There are currently no refbacks.

Copyright (c) 2018 Journal of Mediterranean Earth Sciences

ISSN Online: 2280-6148
ISSN Print: 2037-2272